大学IT网 - 最懂大学生的IT学习网站! QQ资料交流群:367606806
当前位置:大学IT网 > C#技巧 > C#泛型

C#泛型(1)

关键词:泛型C#  阅读(1212) 赞(10)

[摘要]本文是对C#泛型的讲解,对学习C#编程技术有所帮助,与大家分享。

一、泛型概述

二、泛型的优点

三、泛型类型参数

四、类型参数的约束

五、泛型类

六、泛型接口

七、泛型方法

八、泛型委托1

九、泛型代码中的default 关键字

十、C++ 模板和C# 泛型的区别

十一 、运行时中的泛型

十二 、基础类库中的泛型

前言

泛型(generic)是C#语言2.0和通用语言运行时(CLR)的一个新特性。泛型为.NET框架引入了类型参数(type parameters)的概念。类型参数使得设计类和方法时,不必确定一个或多个具体参数,其的具体参数可延迟到客户代码中声明、实现。这意味着使用泛型的类型参数T,写一个类MyList<T>,客户代码可以这样调用:MyList<int>, MyList<string>或 MyList<MyClass>。这避免了运行时类型转换或装箱操作的代价和风险。

一、泛型概述

泛型类和泛型方法兼复用性、类型安全和高效率于一身,是与之对应的非泛型的类和方法所不及。泛型广泛用于容器(collections)和对容器操作的方法中。.NET框架2.0的类库提供一个新的命名空间System.Collections.Generic,其中包含了一些新的基于泛型的容器类。要查找新的泛型容器类(collection classes)的示例代码,请参见基础类库中的泛型。当然,你也可以创建自己的泛型类和方法,以提供你自己的泛化的方案和设计模式,这是类型安全且高效的。下面的示例代码以一个简单的泛型链表类作为示范。(多数情况下,推荐使用由.NET框架类库提供的List<T>类,而不是创建自己的表。)类型参数T在多处使用,具体类型通常在这些地方来指明表中元素的类型。类型参数T有以下几种用法:

  • 在AddHead方法中,作为方法参数的类型。
  • 在公共方法GetNext中,以及嵌套类Node的 Data属性中作为返回值的类型。
  • 在嵌套类中,作为私有成员data的类型。

注意一点,T对嵌套的类Node也是有效的。当用一个具体类来实现MyList<T>时——如MyList<int>——每个出现过的T都要用int代替。

 using System;
 using System.Collections.Generic;
 
 public class MyList<T> //type parameter T in angle brackets
     {
         private Node head;
 // The nested type is also generic on T.
         private class Node        
         {
             private Node next;
 //T as private member data type:
             private T data;          
 //T used in non-generic constructor:
             public Node(T t)         
             {
                next = null;
                 data = t;
             }
             public Node Next
             {
                 get { return next; }
                 set { next = value; }
             }
 
 //T as return type of property:
             public T Data            
             {
                 get { return data; }
                 set { data = value; }
             }
         }
         public MyList()
         {
             head = null;
         }
 //T as method parameter type:
         public void AddHead(T t)     
         {
             Node n = new Node(t);
             n.Next = head;
             head = n;
         }
         public IEnumerator<T> GetEnumerator()
         {
            Node current = head;
           while (current != null)
             {
                 yield return current.Data;
                 current = current.Next;
             }
         }
     }

下面的示例代码演示了客户代码如何使用泛型类MyList<T>,来创建一个整数表。通过简单地改变参数的类型,很容易改写下面的代码,以创建字符串或其他自定义类型的表。

class Program

{

static void Main(string[] args)

{

//int is the type argument.

MyList<int> list = new MyList<int>();

for (int x = 0; x < 10; x++)

list.AddHead(x);

foreach (int i in list)

{

Console.WriteLine(i);

}

Console.WriteLine("Done");

}

}

二、泛型的优点

针对早期版本的通用语言运行时和C#语言的局限,泛型提供了一个解决方案。以前类型的泛化(generalization)是靠类型与全局基类System.Object的相互转换来实现。.NET框架基础类库的ArrayList容器类,就是这种局限的一个例子。ArrayList是一个很方便的容器类,使用中无需更改就可以存储任何引用类型或值类型。

//The .NET Framework 1.1 way of creating a list

ArrayList list1 = new ArrayList();

list1.Add(3);

list1.Add(105);

//...

ArrayList list2 = new ArrayList();

list2.Add("It is raining in Redmond.");

list2.Add("It is snowing in the mountains.");

//...

但是这种便利是有代价的,这需要把任何一个加入ArrayList的引用类型或值类型都隐式地向上转换成System.Object。如果这些元素是值类型,那么当加入到列表中时,它们必须被装箱;当重新取回它们时,要拆箱。类型转换和装箱、拆箱的操作都降低了性能;在必须迭代(iterate)大容器的情况下,装箱和拆箱的影响可能十分显著。另一个局限是缺乏编译时的类型检查,当一个ArrayList把任何类型都转换为Object,就无法在编译时预防客户代码类似这样的操作:

ArrayList list = new ArrayList();

//Okay.

list.Add(3);

//Okay, but did you really want to do this?

list.Add(."It is raining in Redmond.");

int t = 0;

//This causes an InvalidCastException to be returned.

foreach(int x in list)

{

t += x;

}

虽然这样完全合法,并且有时是有意这样创建一个包含不同类型元素的容器,但是把string和int变量放在一个ArrayList中,几乎是在制造错误,而这个错误直到运行的时候才会被发现。在1.0版和1.1版的C#语言中,你只有通过编写自己的特定类型容器,才能避免.NET框架类库的容器类中泛化代码(generalized code)的危险。当然,因为这样的类无法被其他的数据类型复用,也就失去泛型的优点,你必须为每个需要存储的类型重写该类。ArrayList和其他相似的类真正需要的是一种途径,能让客户代码在实例化之前指定所需的特定数据类型。这样就不需要向上类型转换为Object,而且编译器可以同时进行类型检查。换句话说,ArrayList需要一个类型参数。这正是泛型所提供的。在System.Collections.Generic命名空间中的泛型List<T>容器里,同样是把元素加入容器的操作,类似这样:

The .NET Framework 2.0 way of creating a list

List<int> list1 = new List<int>();

//No boxing, no casting:

list1.Add(3);

//Compile-time error:

list1.Add("It is raining in Redmond.");

与ArrayList相比,在客户代码中唯一增加的List<T>语法是声明和实例化中的类型参数。代码略微复杂的回报是,你创建的表不仅比ArrayList更安全,而且明显地更加快速,尤其当表中的元素是值类型的时候。

三、泛型类型参数

在泛型类型或泛型方法的定义中,类型参数是一个占位符(placeholder),通常为一个大写字母,如T。在客户代码声明、实例化该类型的变量时,把T替换为客户代码所指定的数据类型。泛型类,如泛型概述中给出的MyList<T>类,不能用作as-is,原因在于它不是一个真正的类型,而更像是一个类型的蓝图。要使用MyList<T>,客户代码必须在尖括号内指定一个类型参数,来声明并实例化一个已构造类型(constructed type)。这个特定类的类型参数可以是编译器识别的任何类型。可以创建任意数量的已构造类型实例,每个使用不同的类型参数,如下:

MyList<MyClass> list1 = new MyList<MyClass>();

MyList<float> list2 = new MyList<float>();

MyList<SomeStruct> list3 = new MyList<SomeStruct>();

在这些MyList<T>的实例中,类中出现的每个T都将在运行的时候被类型参数所取代。依靠这样的替换,我们仅用定义类的代码,就创建了三个独立的类型安全且高效的对象。有关CLR执行替换的详细信息,请参见运行时中的泛型。

四、类型参数的约束

若要检查表中的一个元素,以确定它是否合法或是否可以与其他元素相比较,那么编译器必须保证:客户代码中可能出现的所有类型参数,都要支持所需调用的操作或方法。这种保证是通过在泛型类的定义中,应用一个或多个约束而得到的。一个约束类型是一种基类约束,它通知编译器,只有这个类型的对象或从这个类型派生的对象,可被用作类型参数。一旦编译器得到这样的保证,它就允许在泛型类中调用这个类型的方法。上下文关键字where用以实现约束。下面的示例代码说明了应用基类约束,为MyList<T>类增加功能。

public class Employee

{

public class Employee

{

private string name;

private int id;

public Employee(string s, int i)

{

name = s;

id = i;

}

public string Name

{

get { return name; }

set { name = value; }

}

public int ID

{

get { return id; }

set { id = value; }

}

}

}

class MyList<T> where T: Employee

{

//Rest of class as before.

public T FindFirstOccurrence(string s)

{

T t = null;

Reset();

while (HasItems())

{

if (current != null)

{

//The constraint enables this:

if (current.Data.Name == s)

{

t = current.Data;

break;

}

else

{

current = current.Next;

}

} //end if

} // end while

return t;

}

}

约束使得泛型类能够使用Employee.Name属性,因为所有为类型T的元素,都是一个Employee对象或是一个继承自Employee的对象。同一个类型参数可应用多个约束。约束自身也可以是泛型类,如下:

class MyList<T> where T: Employee, IEmployee, IComparable<T>, new()

{…}

下表列出了五类约束:

约束

描述

where T: struct

类型参数必须为值类型。

where T : class

类型参数必须为类型。

where T : new()

类型参数必须有一个公有、无参的构造函数。当于其它约束联合使用时,new()约束必须放在最后。

where T : <base class name>

类型参数必须是指定的基类型或是派生自指定的基类型。

where T : <interface name>

类型参数必须是指定的接口或是指定接口的实现。可以指定多个接口约束。接口约束也可以是泛型的。

类型参数的约束,增加了可调用的操作和方法的数量。这些操作和方法受约束类型及其派生层次中的类型的支持。因此,设计泛型类或方法时,如果对泛型成员执行任何赋值以外的操作,或者是调用System.Object中所没有的方法,就需要在类型参数上使用约束。

无限制类型参数的一般用法

没有约束的类型参数,如公有类MyClass<T>{...}中的T, 被称为无限制类型参数(unbounded type parameters)。无限制类型参数有以下规则:

  • 不能使用运算符 != 和 == ,因为无法保证具体的类型参数能够支持这些运算符。
  • 它们可以与System.Object相互转换,也可显式地转换成任何接口类型。
  • 可以与null比较。如果一个无限制类型参数与null比较,当此类型参数为值类型时,比较的结果总为false。

无类型约束

当约束是一个泛型类型参数时,它就叫无类型约束(Naked type constraints)。当一个有类型参数成员方法,要把它的参数约束为其所在类的类型参数时,无类型约束很有用。如下例所示:

class List<T>

{

//...

void Add<U>(List<U> items) where U:T {…}

}

在上面的示例中, Add方法的上下文中的T,就是一个无类型约束;而List类的上下文中的T,则是一个无限制类型参数。无类型约束也可以用在泛型类的定义中。注意,无类型约束一定也要和其它类型参数一起在尖括号中声明:

//naked type constraint

public class MyClass<T,U,V> where T : V

因为编译器只认为无类型约束是从System.Object继承而来,所以带有无类型约束的泛型类的用途十分有限。当你希望强制两个类型参数具有继承关系时,可对泛型类使用无类型约束。

五、泛型类

泛型类封装了不针对任何特定数据类型的操作。泛型类常用于容器类,如链表、哈希表、栈、队列、树等等。这些类中的操作,如对容器添加、删除元素,不论所存储的数据是何种类型,都执行几乎同样的操作。

对大多数情况,推荐使用.NET框架2.0类库中所提供的容器类。有关使用这些类的详细信息,请参见基础类库中的泛型。通常,从一个已有的具体类来创建泛型类,并每次把一个类型改为类型参数,直至达到一般性和可用性的最佳平衡。当创建你自己的泛型类时,需要重点考虑的事项有:

  • 哪些类型应泛化为类型参数。一般的规律是,用参数表示的类型越多,代码的灵活性和复用性也就越大。过多的泛化会导致代码难以被其它的开发人员理解。
  • 如果有约束,那么类型参数需要什么样约束。一个良好的习惯是,尽可能使用最大的约束,同时保证可以处理所有需要处理的类型。例如,如果你知道你的泛型类只打算使用引用类型,那么就应用这个类的约束。这样可以防止无意中使用值类型,同时可以对T使用as运算符,并且检查空引用。
  • 把泛型行为放在基类中还是子类中。泛型类可以做基类。同样非泛型类的设计中也应考虑这一点。泛型基类的继承规则。
  • 是否实现一个或多个泛型接口。例如,要设计一个在基于泛型的容器中创建元素的类,可能需要实现类似IComparable<T>的接口,其中T是该类的参数。

泛型概述中有一个简单泛型类的例子。类型参数和约束的规则对于泛型类的行为(behavior)有一些潜在的影响,——尤其是对于继承和成员可访问性。在说明这个问题前,理解一些术语十分重要。对于一个泛型类Node<T>,客户代码既可以通过指定一个类型参数来创建一个封闭构造类型(Node<int>),也可以保留类型参数未指定,例如指定一个泛型基类来创建开放构造类型(Node<T>)。泛型类可以继承自具体类、封闭构造类型或开放构造类型:

// concrete type

class Node<T> : BaseNode

//closed constructed type

class Node<T> : BaseNode<int>

//open constructed type

class Node<T> : BaseNode<T>

非泛型的具体类可以继承自封闭构造基类,但不能继承自开放构造基类。这是因为客户代码无法提供基类所需的类型参数。

//No error.

class Node : BaseNode<int>

//Generates an error.

class Node : BaseNode<T>

泛型的具体类可以继承自开放构造类型。除了与子类共用的类型参数外,必须为所有的类型参数指定类型,如下代码所示:

//Generates an error.

class Node<T> : BaseNode<T, U> {…}

//Okay.

class Node<T> : BaseNode<T, int>{…}

继承自开放结构类型的泛型类,必须指定:

Generic classes that inherit from open constructed types must specify must specify constraints that are a superset of, or imply, the constraints on the base type:

class NodeItem<T> where T : IComparable<T>, new() {…}

class MyNodeItem<T> : NodeItem<T> where T : IComparable<T> , new(){…}

泛型类型可以使用多种类型参数和约束,如下:

class KeyType<K,V>{…}

class SuperKeyType<K,V,U> where U : IComparable<U>, where V : new(){…}

开放结构和封闭构造类型型可以用作方法的参数:

void Swap<T>(List<T> list1, List<T> list2){…}

void Swap(List<int> list1, List<int> list2){…}

«上一页12下一页»


相关评论